Вышла из строя стиральная машина (холодильник, микроволновка или еще что-то из бытовой техники)? Не торопитесь бежать в магазин покупать новую или искать мастера- в большинстве случаев неисправность можно устранить самостоятельно, сэкономив при этом не одну тысячу рублей. Конечно-же вся современная бытовая техника имеет довольно высокий уровень сложности, однако вместе с этим в ней предусмотрены и функции самодиагностики, что значительно упрощает ремонт
-->

МЕХЗАВОД|Ремонт бытовой техники и электроники cвоими руками

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.



Фототранзистор

Сообщений 1 страница 3 из 3

1

Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.
http://s5.uploads.ru/t/xw3kU.jpg
Фото — фототранзистор

В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.

Где используется фототранзистор:

    Охранные системы (в основном, используются ИК-фототранзисторы);
    Кодеры;
    Компьютерные логические системы управления;
    Фотореле;
    Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
    Датчики уровня и системы подсчета данных.

Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ:

    Могут производить больший ток, чем фотодиоды;
    Эти радиодетали сравнительно очень дешевые;
    Могут обеспечить мгновенный высокий ток на выходе;
    Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.

При этом данный аналог светодиода имеет существенные недостатки, что делает фототранзистор довольно узкоспециализированной деталью:

    Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
    Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
    Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.

Принцип работы

Фототранзистор работает так же, как и транзистор, где ток направляется к коллектору, ключевым отличием является то, что в данном приборе, электроток контролируется только двумя активными контактами.

http://sa.uploads.ru/t/g03Fy.jpg
Фото — простой фототранзистор

В простой схеме, при условии, что ничего не подключено к фототранзистору, базовый ток регулируется при помощи определенного оптического излучения, которое определяет коллектор. Электроток попадает на полупроводник только после резистора. Таким образом, напряжение на приборе будет двигаться от высокого к низкому, в зависимости от уровня оптического излучения. Для усиления сигнала можно подключить устройство к специальному оборудованию. Выход фототранзистора зависит от длины волны падающего света. Этот полупроводник реагирует на свет в широком диапазоне волн в зависимости от спектра работы. Выход фототранзистора определяется площадью открытой переходной коллектор-базы и постоянного тока усиления транзистора.

Фототранзистор бывает разного типа действия, про это говорят основные схемы включения устройства. Виды прибора:

    Оптический изолятор (напоминает по принципу трансформатор, у которого входы заблокированы при помощи электрических контактов);
    Фотореле;
    Датчики. Применяются в охранных системах. Это активные приборы, излучающие свет. При формировании и выделении определенного импульса, полупроводниковый прибор сразу же рассчитывает силу его возвращения. Если сигнал не вернулся или вернулся с другой частотой, то срабатывает сигнализация (как в охранных системах ИК).

Маркировки и основные параметры

Фототранзисторы, которые управляются внешними факторами, имеют обозначение аналогичное обычным транзисторам. На рисунке ниже Вы можете видеть, как такой датчик схематически показывается на чертеже.
http://s4.uploads.ru/t/1cWTG.jpg
При этом VT1, VT2 – это фототранзисторы и база, а VT3 – без базы (например, из мышки). Обратите внимание, цоколевка показана также, как у обычных транзисторов.

Вместе с прочими приборами полупроводникового типа (n-p-n), использующимися для трансформации излучения, эти устройства являются оптронами. Соответственно, их можно изобразить как светодиод в корпусе либо как оптроны (с двумя стрелками, находящимися под углом 90 градусов к базе коллектора). Усилитель на большинстве таких схем обозначается так же, как и база коллектора.

Основные характеристики фототранзисторов LTR 4206E, ФТ 1К и ИК-SFH 305-2/3:
Название Ток коллектора, mA Ток фотоэлемента, mA Напряжение, V Область использования Длина волны, nm
LTR 4206E 100 4,8 30 Радиоэлектронные схемы. 940
ФТ 1К 100 0,4 30 Логические системы управления, сигнализация и т. д. 940
ИК-SFH 305-2/3 (Osram) 50 0.25 – 0.8 32 Охранные системы, роботы, датчики препятствия Arduino (Ардуино) на фототранзисторе. 850

При этом светосинхронизатор ФТ 1 выполнен из кремния, что дает ему явное преимущество – долговечность и устойчивость к перепадам напряжения. ВАХ представляют собой формулу:
формула ВАХ
Фото — формула ВАХ

Расчет производится так же, как и у биполярных транзисторов.

В зависимости от потребностей, Вы можете купить фототранзистор SMD PT12-21, КТФ-102А или LTR 4206E (перед тем, как взять деталь, нужно проверить её работоспособность). Цена от 3 рублей до нескольких сотен.

Если Вы хотите своими руками сделать устройство, для которого необходим фототранзистор, можно разработать простую интеллектуальную систему. Робот по этой схеме будет реагировать на свет, в зависимости от настройки, он будет от него убегать или наоборот, выходить на источник освещения.

Чтобы самому сделать робота, необходимо приготовить:

    Микросхему L293D;
    Небольшой моторчик, можно взять даже от детской игрушки;
    Любые отечественные фототранзисторы и полевые резисторы с сопротивлением на менее 200 Ом;
    Кабеля для соединения и корпус, где будет расположен механизм.
http://s9.uploads.ru/t/46Djq.jpg
Как видно по схеме, фототранзистор здесь – это своеобразный микроконтроллер, как ATMEGA, который определяет источник света, даже его подключение аналогично. Вы можете при использовании паяльника сделать простой механизм, который будет следовать даже за тенью. Подобные импортные приборы выпускает компания BEAM, но, естественно, там более мощная оптопара. Для работы устройства Вам нужно только правильно подключить фототранзистор к схеме и питанию.

На обозначении есть пункты GDR и VCC. Первое – это заземление, второе – питание. Обратите внимание, рядом с питанием стоит значок 5В – это значит, что батарея должна быть минимум на 5 вольт.

Принцип действия такого робота прост: когда свет попадает на фототранзистор, на микросхеме происходит включение мотора. Это реализуется, потому что приемник подал положительный сигнал. Заводится самодельный мотор и прибор начинает двигаться.

Использование резистора в этой схеме необходимо для регулировки электрического тока. Также от сопротивления резистора зависит долговечность оптической детали, если он перегреется – то фототранзистору потребуется замена. Для работы очень важно подключить все провода также, как и на схеме. Выключатель к роботу можно приделать от обычной шариковой ручки, он будет разрывать связь между микросхемой и фототранзистором. Проверка робота производится путем исследования его реакции на свет и тень.

2

Фототранзисторы. Устройство. Работа. Применение. Особенности
http://sh.uploads.ru/t/cGB73.jpg
Фототранзисторы являются твердотельными полупроводниками с внутренним усилением, применяемым для передачи цифровых и аналоговых сигналов. Этот прибор выполнен на основе обычного транзистора. Аналогами фототранзисторов являются фотодиоды, которые уступают ему по многим свойствам, и не сочетаются с работой современных электронных приборов и радиоустройств. Их принцип действия похож на работу фоторезистора.

Чувствительность фототранзистора гораздо выше, чем у фотодиода. Они нашли применение в различных устройствах, в которых применяется зависимость от светового потока. Такими устройствами являются лазерные радары, пульты дистанционного управления, датчики дыма и другие. Фототранзисторы могут реагировать как на обычное освещение, так и на ультрафиолетовое и инфракрасное излучение.
Фототранзисторы. Устройство

Наиболее популярны биполярные фототранзисторы структуры n-p-n.
http://s3.uploads.ru/t/AHBs8.jpg
Ф-транзисторы имеют чувствительность к свету больше, чем простые биполярные, так как они оптимизированы для лучшего взаимодействия с лучами света. В их конструкции зона коллектора и базы имеет большую площадь. Корпус выполнен из темного непрозрачного материала, с окошком для пропускания света.

Большинство таких полупроводников изготавливают из монокристаллов германия и кремния. Существуют также фототранзисторы на основе сложных материалов.
Принцип действия

Транзистор включает в себя базу, коллектор и эмиттер. При функционировании фототранзистора база не включена в работу, так как свет создает электрический сигнал, который дает возможность протекать току по полупроводниковому переходу.

При нерабочей базе переход коллектора транзистора смещается в обратном направлении, а переход эмиттера в прямом направлении. Прибор остается без активности до тех пор, пока луч света не осветит его базу. Освещение активизирует полупроводник, при этом создавая пары дырок и электронов проводимости, то есть носители заряда. В итоге через коллектор и эмиттер проходит ток.
Свойство усиления

Ф-транзисторы имеют рабочий диапазон, размер которого зависит от интенсивности падающего света, так как это связано с положительным потенциалом его базы.

Ток базы от падающего света подвергается усилению в сотни и тысячи раз. Дополнительное усиление тока обеспечивается особым транзистором Дарлингтона, который представляет собой полупроводник, эмиттер которого соединен с базой другого биполярного транзистора. На схеме изображен такой вид фототранзистора.
http://s5.uploads.ru/t/Zgkfo.jpg
Это дает возможность создать повышенную чувствительность при слабом освещении, так как происходит двойное усиление двумя полупроводниками. Двумя транзисторами можно добиться усиления в сотни тысяч раз. Необходимо учитывать, что транзистор Дарлингтона медленнее реагирует на свет, в отличие от обычного фототранзистора.
Схемы подключения
Схема с общим эмиттером

По этой схеме создается сигнал выхода, переходящий от высокого состояния в низкое, при падении лучей света.
http://sg.uploads.ru/t/bFXDR.jpg
Эта схема выполнена с помощью подключения сопротивления между коллектором транзистора и источником питания. Напряжение выхода снимают с коллектора.
Схема с общим коллектором

Усилитель, подключенный с общим коллектором, создает сигнал выхода, переходящий от низкого состояния в высокое, при попадании света на полупроводник.

http://s8.uploads.ru/t/RWYZy.jpg

Эта схема образуется подключением сопротивления между отрицательным выводом питания и эмиттером. С эмиттера снимается выходной сигнал.
В обоих вариантах транзистор может работать в 2-х режимах:

    Активный режим.
    Режим переключения.

Активный режим

В этом режиме фототранзистор создает сигнал выхода, зависящий от интенсивности падающего света. Когда уровень освещенности превосходит определенную границу, то транзистор насыщается, и сигнал на выходе уже не будет повышаться, даже если увеличивать интенсивность лучей света. Такой режим действия рекомендуется для устройств с функцией сравнения двух порогов потока света.
Режим переключения

Действие полупроводника в этом режиме значит, что транзистор будет реагировать на подачу света выключением или включением. Такой режим необходим для устройств, в которых необходимо получение выходного сигнала в цифровом виде. Путем изменения значения резистора в схеме усилителя, можно подобрать один из режимов функционирования.

Для эксплуатации фототранзистора в качестве переключателя чаще всего применяют сопротивление более 5 кОм. Напряжение выхода повышенного уровня в переключающем режиме будет равно питающему напряжению. Напряжение выхода малого уровня должно равняться менее 0,8 В.
Проверка фототранзистора

Такой транзистор легко проверяется мультитестером, даже без наличия базы транзистора. Если подключить мультитестер к участку эмиттер-коллектор, то его сопротивление при любой полярности будет большим, так как транзистор закрыт. Если луч света попадает на чувствительный элемент, то измерительный прибор покажет низкое значение сопротивления, так как транзистор в этом случае открылся, благодаря свету, при правильной полярности питания.

Так ведет себя обычный транзистор, но он открывается сигналом электрического тока, а не лучом света. Кроме силы света, большую роль играет спектральный состав света.
Применение

• Системы охраны (чаще применяются инфракрасные ф-транзисторы).
• Фотореле.
• Системы расчета данных и датчики уровней.
• Автоматические системы коммутации осветительных приборов (также применяются инфракрасные ф-транзисторы).
• Компьютерные управляющие логические системы.
• Кодеры.
Преимущества

    Выдают ток больше, чем фотодиоды.
    Способны создать мгновенную высокую величину тока выхода.
    Основное достоинство – способность создания повышенного напряжения, в отличие от фоторезисторов.
    Невысокая стоимость.

Недостатки
Ф-транзисторы являются аналогом фотодиодов, однако имеют серьезные недостатки, которые создают условия для узкой специализации этого полупроводника.

    Многие виды фототранзисторов изготавливают из силикона, поэтому они не могут работать с напряжением более 1 кВ.
    Такие светочувствительные полупроводники имеют большую зависимость от перепадов напряжения питания в электрической цепи. В таких режимах фотодиод ведет себя гораздо надежнее.
    Ф-транзисторы не сочетаются с работой в лампах, по причине малой скорости носителей заряда.

Маркировка

Управляемые световым потоком транзисторы, на схемах обозначаются как обычные транзисторы.
http://s4.uploads.ru/t/yIdCL.jpg
VТ1 и VТ2 – ф-транзисторы с базой, VТ3 – транзисторы без базы. Цоколевка изображена как у простых транзисторов.

Так же, как и другие приборы на основе полупроводников с переходом n-p-n, применяющиеся для преобразования светового потока, фототранзисторы можно назвать оптронами. Их на схемах изображают в виде светодиода в корпусе, или в виде оптронов со стрелками. Усилитель во многих схемах обозначается в виде базы и коллектора.

3

http://forumupload.ru/uploads/0019/8b/c2/9/98972.png



Рейтинг форумов | Создать форум бесплатно