Вышла из строя стиральная машина (холодильник, микроволновка или еще что-то из бытовой техники)? Не торопитесь бежать в магазин покупать новую или искать мастера- в большинстве случаев неисправность можно устранить самостоятельно, сэкономив при этом не одну тысячу рублей. Конечно-же вся современная бытовая техника имеет довольно высокий уровень сложности, однако вместе с этим в ней предусмотрены и функции самодиагностики, что значительно упрощает ремонт
-->

МЕХЗАВОД|Ремонт бытовой техники и электроники cвоими руками

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.



Как здоровье, стабилитрон?

Сообщений 1 страница 2 из 2

1

Современные цифровые мультиметры позволяют радиолюбителю измерять сопротивление резистора, ёмкость конденсатора, величину индуктивности, частоту сигнала, температуру объекта, а чтобы напряжение стабилизации стабилитрона – мне такие не встречались. А в распоряжении радиолюбителя их, стабилитронов, имеется много и разных. В металлическом, стеклянном, пластмассовом корпусах, иногда с нечитаемыми надписями. Как отличить стабилитрон от диода, особенно в стеклянном корпусе? (Фото1).

Как здоровье, стабилитрон?
Фото 1
http://s3.uploads.ru/t/DjsMU.jpg

Особенно важно знать напряжение стабилизации стабилитрона Uст. Во многих случаях напряжение пробоя кремниевого стабилитрона можно узнать из технической документации или просто определить из его названия. Например, если на корпусе стабилитрона надпись BZX79 5V6, то это означает, что он имеет напряжение стабилизации 5,6 В и принадлежит к семейству BZX. Но с другой стороны, когда наименование стабилитрона неизвестно (стёрлись надписи) или необходимо проверить его работоспособность - как быть? В этом случае необходимо иметь под рукой приставку к мультиметру, которая поможет определить напряжение стабилизации и отличить диод от стабилитрона.
Как работает стабилитрон? Стабилитрон - это такой диод, который в отличие от обычного выпрямительного диода при достижении определённого значения обратно приложенного напряжения (напряжения стабилизации) пропускает ток в обратном направлении, а при его дальнейшем повышении, уменьшая своё внутреннее сопротивление, стремится удержать это напряжение на определённом уровне. Посмотрим на его вольтамперную характеристику (Рис.1б).
http://sh.uploads.ru/t/Cz7dr.jpg
На вольтамперной характеристике (ВАХ) стабилитрона режим стабилизации напряжения изображён в отрицательной области приложенного напряжения и тока. По мере увеличения обратного напряжения стабилитрон сначала «сопротивляется» и ток, протекающий через него, минимален. При определённом напряжении ток стабилитрона начинает увеличиваться. Достигается такая точка (точка1 на ВАХ), после которой дальнейшее увеличение напряжения на делителе «резистор-стабилитрон» не вызывает увеличения напряжения на p-n переходе стабилитрона. На этом участке ВАХ происходит увеличение напряжения лишь на резисторе (рис.1а). Ток, проходящий через резистор и стабилитрон, продолжает расти. От точки 1, соответствующей минимальному току ста-билизации, до определённой точки 2 вольтамперной характеристики, соответствующей максимальному току стабилизации, стабилитрон работает в требуемом режиме стабилизации (зелёный участок ВАХ). После точки 2 стабилитрон начинает греться и может выйти из строя. Участок между точками 1 и 2 является рабочим участком стабилизации, на котором стабилитрон выступает в качестве регулятора. Производители ста-билитронов всегда указывают напряжение стабилизации при некотором токе (5...15мА). В предлагаемой приставке используется такая же величина тока при измерении напряжения стабилизации.
Радиолюбитель, имеющий регулируемый источник питания, может вос-пользоваться простым пробником для определения напряжения стабили-зации. Схема приведена на рис.2. На микросхемном стабилизаторе LM317 выполнен стабилизатор тока. Ток можно установить 5 или 15мА. Если использовать LM317AHV (входное напряжение 52В максимальное), то можно измерять напряжение стабилизации до 48В, а с LM317 - до 35В.
http://s7.uploads.ru/t/mzvc9.jpg
Схема мобильной приставки для измерения напряжения стабилизации приведена на рис.3.
http://sa.uploads.ru/t/gSYaQ.jpg
Основа схемы - специализированная микросхема МС34063, которая представляет собой схему управления DC/DC-преобразователем. Данная микросхема специально разработана для применения в повышающих, понижающих и инвертирующих преобразователях с минимальным количеством элементов. Напряжение на выходе, получаемое повышающим преобразователем, определяется двумя резисторами R2 и R4. Расчёт номиналов резисторов можно выполнить с помощью онлайн-калькулятора, размещённого на сайте «Радиоактив».

Для сборки схемы нам потребуются:
Резисторы: R1 - 180 Om; R2 - 56k; R3 - 9,1 Om; R4 - 1k6; R5 - 22 Om.
Конденсаторы: C1 - 330p; C2 - 470mk*16V; C3 - 10mk*100V.
Индуктивность - 1900 мкГ. Диоды Шоттки - 1N5819, 2 шт.
Микросхема - МС34063 в корпусе DIL 8. Установлена на панельку.
Микросхема - LM334Z в корпусе ТО-92 (стабилизатор тока).
http://sh.uploads.ru/t/LYi7J.jpg
Печатная плата, рис.4

http://s9.uploads.ru/t/35snG.jpg
http://s3.uploads.ru/t/FgKam.jpg
Всё смонтировано на печатной плате. Для подключения к мультиметру использована вилка от зарядного устройства, соответствующим образом доработанная для этой цели. Источник питания - 3 элемента ААА, соединённые последовательно, итого 4,5В. Элементы питания размещены в боксе, закреплённом на плате. Включение питания осуществляется малогабаритной кнопкой. Индуктивность намотана на пластмассовой катушке размерами: внешний диаметр - 15мм, внутренний - 5мм, расстояние между щёчками - 15мм. Провод ПЭЛ, ПЭВ диаметром 0,2мм, наматываем до заполнения. У меня измеренная величина индуктивности получилась 2000мкГ. Если нет микросхемы LM334Z, то её можно исключить и вместо этого вставить резистор 15к между катодом VD2 и выводом VDC, тогда резистор 22 Ом тоже не нужен.
Когда всё установили на плату, проверили монтаж, можно приступать к проверке работоспособности приставки. Сразу скажу, у меня схема заработала с первого раза. Но обо всём по порядку. Не вставляя микросхему в панельку, проверяем напряжение в гнёздах панельки, естественно, подключив источник питания. На 6 выводе должно быть напряжение питания, на выводах 7,8,1 – чуть меньше. Отключаем питание и, если всё нормально, устанавливаем микросхему на место. Включаем питание и измеряем потребляемый ток без нагрузки. При напряжении 9,4В величина тока составила 10,6 мА, а при 4,9В - 26,5 мА. Теперь можно проверить величину напряжения на выходе приставки. Для этого вставляем вилку с платой в гнёзда мультиметра, вот как на фото 4.
http://s9.uploads.ru/t/qV0JR.jpg

На мультиметре выставляем предел 200В постоянного напряжения, нажимаем кнопку S1 и считываем показания вольтметра. При напряжении источника питания 4,5В величина выходного постоянного напряжения составила 33,8 В. Ток в измерительной цепи - 10мА. При 9В выходное напряжение уменьшилось до 21,8В, т.е. надо пересчитать номиналы резисторов R2 и R4, чтобы увеличить выходное напряжение. С целью увеличения выходного напряжения резистор R2 был заменён переменным, чтобы увидеть как будет изменяться напряжение при его регулировке. При сопротивлении 120к напряжение возросло до 44В (Uпит.-4,5В), и до 34В при 9В Uпит. При регулировке резистором R4 наблюдалось только изменение напряжения от 40 до 44В. В итоге с помощью этой приставки мы можем измерять напряжение стабилизации стабилитронов до 40В.
Переходим к выполнению измерений:
- подсоединяем приставку к мультиметру, выбираем предел измерения 200В (постоянное);
- проверяем наличие напряжения на выходе приставки, нажав кратковремен-но кнопку S1;
- подключаем стабилитрон к зажимам, как на фото 5, нажимаем S1 и считы-ваем показания;
http://sd.uploads.ru/t/uEiaT.jpg
- при подключении несимметричного стабилитрона анодом к «+», а катодом «-» мультиметр покажет минимальное напряжение (0,3…0,6В). При изменении полярности подключения- катодом к «+», а анодом к «-», мультиметр покажет напряжение стабилизации, если оно ниже 44В. В нашем случае соответственно 0,7В и 14,6В. Напряжение стабилизации проверенного стабилитрона 14,6В (фото 6);
http://s5.uploads.ru/t/iatz2.jpg
Естественно, захотелось убедиться, а точно ли измеряет приставка. Этот же стабилитрон был проверен в радиомастерской на промышленном испытателе Л2-54. Оказалось, что показания прибора и приставки почти совпадают (0,5В и 14,7В на приборе). Вполне удовлетворительно для самодельного устройства.
- при подключении симметричного стабилитрона (КС162А) напряжение стабилизации составило 6,2В при любой полярности;
- подключение динистора DB3 при любой полярности показало напряжение пробоя 29,5В;
- диод при одной полярности показал минимальное напряжение, при обратной - выходное напряжение приставки – 44В;
- транзистор в роли стабилитрона выдал такие результаты: КТ315Б,Е - 7,3В; S9014 - 9В.
  Перед тем, как устанавливать радиоэлемент в приставку для проведения измерений, проверьте его на отсутствие обрыва или короткого замыкания внутри корпуса, чтобы избежать лишних вопросов.
  Высоковольтные стабилитроны этим устройством не проверить, требует-ся более высокое напряжение. Со временем рассмотрим и такое устройство.
  Если приставку оформить в подходящий корпус, то её можно брать с собой на радиорынок, чтобы оградить себя от недобросовестных продавцов, покупая стабилитроны.

Скачать схему: pristavka-na-ms34063.spl7 [15,98 Kb]   -  Ссылка
Скачать печатную плату: plata-stabilitrona.lay6

2

Как вы, наверное, догадались по прочтении заголовка, разговор пойдет о проверке радиодеталей с помощью осциллографа. Хотя существует немало способов проверки диодов, транзисторов, резисторов, конденсаторов и других радиокомпонентов приборами со стрелочными индикаторами, вряд ли они заменят визуальный контроль, при котором бывают заметны дефекты, почти не обнаруживаемые другими приборами
Итак, поговорим о «просмотре» параметров радиодеталей на экране нашего осциллографа. Нетрудно догадаться, что просто подключить выводы какой-то детали к входным щупам и наблюдать изображение на экране осциллографа бесполезно. Нужна приставка, способная обеспечить рабочий режим для проверки деталей. Такую приставку придется изготовить самим.
http://sa.uploads.ru/t/3uztX.jpg

Схема приставки приведена на рис. 1. В ней использован готовый трансформатор питания Т1 — унифицированный трансформатор кадровой развертки телевизоров ТВК-110ЛМ, который нетрудно приобрести в магазинах радиотоваров или заказать через базу Роспосылторга. У этого трансформатора вторичная обмотка выполнена с отводом почти от середины. Часть напряжения, снимаемого с нижней, по схеме, половины обмотки (между выводами 3 и 4—5), будем использовать чаще, чем все напряжение обмотки. Поэтому и поставлен переключатель SA1, с помощью которого на измерительную часть приставки подается переменное напряжение либо 14 В, либо 27 В.
Схема приставки приведена на рис. 1. В ней использован готовый трансформатор питания Т1 — унифицированный трансформатор кадровой развертки телевизоров ТВК-110ЛМ, который нетрудно приобрести в магазинах радиотоваров или заказать через базу Роспосылторга. У этого трансформатора вторичная обмотка выполнена с отводом почти от середины. Часть напряжения, снимаемого с нижней, по схеме, половины обмотки (между выводами 3 и 4—5), будем использовать чаще, чем все напряжение обмотки. Поэтому и поставлен переключатель SA1, с помощью которого на измерительную часть приставки подается переменное напряжение либо 14 В, либо 27 В.
http://s7.uploads.ru/t/Zz6vg.jpg
Совсем не обязательно использовать указанный трансформатор со сравнительно высоким напряжением на вторичной обмотке. Вполне подойдет трансформатор с напряжением 6... 8 В, чтобы не перегружать некоторые проверяемые полупроводниковые приборы (в частности, транзисторы, у которых допустимое напряжение между коллектором и эмиттером или базой и эмиттером не превышает десятка вольт), а вот дополнительная обмотка может быть рассчитана даже на большее напряжение — она используется при проверке «высоковольтных» стабилитронов и тринисторов.
«Здоровье» деталей — на экране осциллографа
http://s3.uploads.ru/t/qsMYO.jpg

Как вы, наверное, догадались по прочтении заголовка, разговор пойдет о проверке радиодеталей с помощью осциллографа. Хотя существует немало способов проверки диодов, транзисторов, резисторов, конденсаторов и других радиокомпонентов приборами со стрелочными индикаторами, вряд ли они заменят визуальный контроль, при котором бывают заметны дефекты, почти не обнаруживаемые другими приборами.

Итак, поговорим о «просмотре» параметров радиодеталей на экране нашего осциллографа. Нетрудно догадаться, что просто подключить выводы какой-то детали к входным щупам и наблюдать изображение на экране осциллографа бесполезно. Нужна приставка, способная обеспечить рабочий режим для проверки деталей. Такую приставку придется изготовить самим.
«Здоровье» деталей — на экране осциллографа

Схема приставки приведена на рис. 1. В ней использован готовый трансформатор питания Т1 — унифицированный трансформатор кадровой развертки телевизоров ТВК-110ЛМ, который нетрудно приобрести в магазинах радиотоваров или заказать через базу Роспосылторга. У этого трансформатора вторичная обмотка выполнена с отводом почти от середины. Часть напряжения, снимаемого с нижней, по схеме, половины обмотки (между выводами 3 и 4—5), будем использовать чаще, чем все напряжение обмотки. Поэтому и поставлен переключатель SA1, с помощью которого на измерительную часть приставки подается переменное напряжение либо 14 В, либо 27 В.
«Здоровье» деталей — на экране осциллографа

Совсем не обязательно использовать указанный трансформатор со сравнительно высоким напряжением на вторичной обмотке. Вполне подойдет трансформатор с напряжением 6... 8 В, чтобы не перегружать некоторые проверяемые полупроводниковые приборы (в частности, транзисторы, у которых допустимое напряжение между коллектором и эмиттером или базой и эмиттером не превышает десятка вольт), а вот дополнительная обмотка может быть рассчитана даже на большее напряжение — она используется при проверке «высоковольтных» стабилитронов и тринисторов.
«Здоровье» деталей — на экране осциллографа

С (подвижного контакта переключателя SA1 сигнал поступает на гнездо XS1, а с него — на входной щуп осциллографа. «Земляной» щуп осциллографа, подключаемый к гнезду XS2, оказывается соединенным с входным щупом через резистор R3. Поскольку нижний, по Схеме, вывод этого резистора не подключен к цепи нижнего вывода вторичной обмотки трансформатора, падения напряжения на резисторе не будет, а значит, не будет и сигнала на входе Y осциллографа
http://s4.uploads.ru/t/COMsG.jpg
Другое дело с входом X — его проводник, соединенный с гнездом XS6, оказывается подключенным к выводу 3 вторичной обмотки трансформатора через переменный резистор R2. Поскольку «земляной» щуп осциллографа соединен (через резистор R3) с другим выводом (4—5 или 6) обмотки, на входе X осциллографа будет переменное напряжение, амплитуду которого можно изменять переменным резистором R2 (он образует с входным сопротивлением усилителя канала X делитель напряжения). Поэтому на экране осциллографа, работающего в режиме внешней развертки (кнопка «АВТ. — ЖДУЩ.» — в положении «АВТ.», а «РАЗВ. —ВХ. X» — в положении «ВХ, X»), появится горизонтальная линия. Вход осциллографа может быть как открытый, так и закрытый, но лучший вариант — режим открытого входа.
http://sg.uploads.ru/t/krBKD.jpg

Как вы, наверное, догадались по прочтении заголовка, разговор пойдет о проверке радиодеталей с помощью осциллографа. Хотя существует немало способов проверки диодов, транзисторов, резисторов, конденсаторов и других радиокомпонентов приборами со стрелочными индикаторами, вряд ли они заменят визуальный контроль, при котором бывают заметны дефекты, почти не обнаруживаемые другими приборами.

Итак, поговорим о «просмотре» параметров радиодеталей на экране нашего осциллографа. Нетрудно догадаться, что просто подключить выводы какой-то детали к входным щупам и наблюдать изображение на экране осциллографа бесполезно. Нужна приставка, способная обеспечить рабочий режим для проверки деталей. Такую приставку придется изготовить самим.
«Здоровье» деталей — на экране осциллографа

Схема приставки приведена на рис. 1. В ней использован готовый трансформатор питания Т1 — унифицированный трансформатор кадровой развертки телевизоров ТВК-110ЛМ, который нетрудно приобрести в магазинах радиотоваров или заказать через базу Роспосылторга. У этого трансформатора вторичная обмотка выполнена с отводом почти от середины. Часть напряжения, снимаемого с нижней, по схеме, половины обмотки (между выводами 3 и 4—5), будем использовать чаще, чем все напряжение обмотки. Поэтому и поставлен переключатель SA1, с помощью которого на измерительную часть приставки подается переменное напряжение либо 14 В, либо 27 В.
«Здоровье» деталей — на экране осциллографа

Совсем не обязательно использовать указанный трансформатор со сравнительно высоким напряжением на вторичной обмотке. Вполне подойдет трансформатор с напряжением 6... 8 В, чтобы не перегружать некоторые проверяемые полупроводниковые приборы (в частности, транзисторы, у которых допустимое напряжение между коллектором и эмиттером или базой и эмиттером не превышает десятка вольт), а вот дополнительная обмотка может быть рассчитана даже на большее напряжение — она используется при проверке «высоковольтных» стабилитронов и тринисторов.
«Здоровье» деталей — на экране осциллографа

С (подвижного контакта переключателя SA1 сигнал поступает на гнездо XS1, а с него — на входной щуп осциллографа. «Земляной» щуп осциллографа, подключаемый к гнезду XS2, оказывается соединенным с входным щупом через резистор R3. Поскольку нижний, по Схеме, вывод этого резистора не подключен к цепи нижнего вывода вторичной обмотки трансформатора, падения напряжения на резисторе не будет, а значит, не будет и сигнала на входе Y осциллографа.
«Здоровье» деталей — на экране осциллографа

Другое дело с входом X — его проводник, соединенный с гнездом XS6, оказывается подключенным к выводу 3 вторичной обмотки трансформатора через переменный резистор R2. Поскольку «земляной» щуп осциллографа соединен (через резистор R3) с другим выводом (4—5 или 6) обмотки, на входе X осциллографа будет переменное напряжение, амплитуду которого можно изменять переменным резистором R2 (он образует с входным сопротивлением усилителя канала X делитель напряжения). Поэтому на экране осциллографа, работающего в режиме внешней развертки (кнопка «АВТ. — ЖДУЩ.» — в положении «АВТ.», а «РАЗВ. —ВХ. X» — в положении «ВХ, X»), появится горизонтальная линия. Вход осциллографа может быть как открытый, так и закрытый, но лучший вариант — режим открытого входа.
«Здоровье» деталей — на экране осциллографа

К гнездам XS3—XS5 подключают выводы проверяемых радиодеталей (в основном к гнездам XS3 и XS4). Резистор R1 и кнопка SB1 необходимы для проверки и установки калибровки осциллографа по входам Y и X. Резистором R4 устанавливают ток через управляющий электрод при проверке тринисторов.
Постоянные резисторы в приставке могут быть МЛТ-0,25, переменные— СП-1 или аналогичные. Кнопка и переключатель — любой конструкции, сетевой выключатель Q1—тоже любой конструкции, но рассчитанный на работу при данном сетевом напряжении. .Гнезда — любые, но лучше использовать гнезда-зажимы (клеммы), чтобы можно было крепить выводы деталей.
http://sg.uploads.ru/t/AJZfC.jpg
Детали приставки смонтируйте в корпусе произвольной конструкции, например, «показанной на рис. 2. Гнезда-зажимы и органы управления устанавливают на лицевой панели, держатель предохранителя с предохранителем — на задней стенке. Через отверстие в задней стенке выводят шнур питания с сетевой вилкой XPI на конце.

Как только приставка будет включена в сеть, а осциллограф подключен к ней, на экране появится горизонтальная линия развертки. Но не спешите регулировать ее длину переменным резистором R2. Сначала установите переключатель SA1 в положение «I» И замкните между собой гнезда XS3 и XS4. На экране осциллографа появится вертикальная полоса (ведь вход X ^кнут на «земляной» щуп, а напряжение со вторичной обмотки подведено к резистору R3, а значит, к входу Y), ее наибольший наблюдаемый размах устанавливают входным аттенюатором — в данном примере на рис, 3,а четыре деления масштабной сетки при установке аттенюатора— в положение «10 В/дел.».

Вот теперь, сняв перемычку между гнездами XS3 и XS4, можно установить переменным резистором R2 линию развертки длиной тоже четыре деления масштабной сетки (рис. 3 б). Чтобы убедиться в правильности «калибровки, нажмите кнопку SB1. На экране должна появиться линия (рис. 3, в), расположенная относительно горизонтали и вертикали точно под углом 45°. В случае необходимости более точно наклон можно установить тем же переменным резистором. Теперь все готово к проверке деталей.
http://s9.uploads.ru/t/sVW2C.jpg
Начнем с постоянного резистора. Его выводы подключают к гнездам XS3 и XS4. Поскольку при замыкании этих гнезд на экране появляется вертикальная полоса, а при размыкании — горизонтальная (соответственно нулевое сопротивление и бесконечное), то прн проверке резисторов линия будет занимать эти и промежуточные положения в зависим ости от сопротивления резистора. Так, с резистором сопротивлением 20 кОм линия отклонится от горизонтали на 20° (рис. 4, а), а с резистором сопротивлением 1,5 кОм —на 60° (рис. 4,6). Научившись отсчитывать по экрану угол наклона (здесь поможет транспортир), можете составить график, по которому будете определять значение сопротивления. График выглядит так, как показано на рис. 6.

Проверяя переменный резистор, подключают к гнездам XS3 н XS4 один из крайних выводов и средний (движок). Перемещая движок из одного крайнего положения в другое, будете наблюдать на экране изменение угла наклона линии. Если линия все время остается непрерывной, резистор исправен. Появление помех, скачки линии от наклонной до горизонтальной свидетельствуют о плохом контакте движка резистора с графитовым слоем. Такой резистор использовать в радиоаппаратуре нежелательно.

Интересна проверка с помощью приставки фоторезистора. При его подключении и затемнении светочувствительного слоя на экране осциллографа должно быть изображение горизонтальной или с небольшим наклоном -прямой линии, что свидетельствует о большом темновом сопротивлении фоторезистора. При освещении же чувствительного слоя наклон линии изменится — она будет стремиться к вертикали. Чем больше угол наклона, тем меньшим сопротивлением обладает фоторезистор, а значит, тем больше его освещенность. Как и для резистора, по углу наклона линии можно определить сопротивление фоторезистора, пользуясь графиком.

Следующая радиодеталь — конденсатор. При подключении его выводов к приставке на экране будет наблюдаться либо прежняя горизонтальная линия, либо эллипс, либо .вертикальная линия все зависит от емкости или качества конденсатора. Так, конденсаторы емкостью до 0,01 мкФ «оставляют» горизонтальную линию на экране, появление вертикальной линии укажет на короткое замыкание обкладок. Если емкость конденсатора 0,02 мкФ и более (до 10 мкФ), на экране наблюдается эллипс или круг в зависимости от емкости. Скажем, емкости 0,3 мкФ будет соответствовать горизонтально расположенный эллипс (рис. 6, а) с отношением горизонтальной оси к вертикальной равным 4. Когда подключите конденсатор емкостью примерно I мкФ, на экране появится круг (рис. 6, б), а с увеличением емкости круг начнет сжиматься в эллипс с меньшей горизонтальной осью. По отношению осей эллипса можно определить емкость (Испытываемого конденсатора, воспользовавшись графиком на рис. 7.

Приставка пригодна для проверки обмоток трансформаторов, дросселей и других деталей сравнительно большой индуктивности. На экране в этом случае появляется эллипс ((рис. 8), наклон которого зависит от значения индуктивности. К примеру, при индуктивности до 5 Гн большая ось эллипса оказывается наклоненной ближе к вертикали (рис. 8, а). С индуктивностью 5 Гн появится круг (как и при проверке конденсатора емкостью около 1 мкФ), а при большей индуктивности ось эллипса начнет приближаться к горизонтальной линии (.рис. 8,6). Сравнивая между собой изображения заведомо исправной обмотки и испытуемой, нетрудно сделать вывод о наличии или отсутствии короткозамкнутых витков в обхмотке. Ширина эллипса в этом случае уменьшается, а иногда он превращается в прямую линию, характерную для резисторов определенного сопротивления.

Подключив к приставке германиевый или кремниевый диод, увидите картину, показанную на рис. 9, а. Часть горизонтальной линии развертки (точно половина ее) «переломится» вверх под углом 90°— это прямая ветвь характеристики диода, когда он пропускает ток. Горизонтальная часть изображения — обратная ветвь, соответствующая закрытому диоду (когда на .него подается обратное напряжение).

Изменив полярность подключения диода, увидите, что прямая ветвь окажется внизу (рис. 9,6). В дальнейшем по положению этой ветви вы сможете определять выводы любого диода, если на его корпусе отсутствует маркировка. Когда прямая ветвь вверху, к гнезду XS3 подключен анод диода, а к гнезду XS4— катод.

Вы, наверное, заметили уже, что по сравнению с характеристиками диодов в справочной литературе наше изображение зеркально. Это результат фазового сдвига (на 180е) между напряжениями, поступающими на вертикальный и горизонтальный входы осциллографа. Чтобы получить «правильное» изображение характеристики, нужно поменять местами проводники от горизонтальных пластин осциллографа. На некоторых осциллографах для этой цели устанавливают на задней стенке переключатель. Такой переключатель можно поставить и в осциллографе ОМЛ-2М. Но проще всего установить сбоку от экрана зеркало (под прямым углом) и наблюдать изображение через него — характеристика полупроводниковых приборов будет «рисоваться» в реальном виде.

Стабилитрон -подключают к приставке в той же полярности, Что и диод, — анодом к гнезду XS3. На экране появится изображение обеих ветвей характеристики, правда, как уже было сказано, в зеркальном виде (рис 9, в). Расстояние между вертикальными линиями ветвей равно напряжению стабилизации проверяемого элемента. Поскольку калибровка масштабной сетки по вертикали и горизонтали одинакова (10 В/дел.), можно считать, что у подключенного в данном случае стабилитрона Д810 оно соответствует 10 В.

Чтобы измерить это напряжение более точно, поменяйте местами щупы входов осциллографа и установите входным аттенюатором чувствительность 2 В/дел. — получите картину, показанную и а рис. 9, г (придется, конечно, сместить линию одной из ветвей на нижнее деление масштабной сетки). Теперь удобно будет ие только более точно фиксировать напряжение стабилизации, но и сравнивать стабилитроны между собой, а также отбирать нужный из них для собираемой конструкции.

При проверке стабилитронов с большим напряжением стабилизации нужно устанавливать переключатель SA1 в положение «II», т. е. увеличивать подаваемое на входные гнезда прибора напряжение. В этом случае проверяют калибровку и корректируют ее известным способом.

Тринистор подключают анодом и катодом к гнездам XS3 и XS4 в указанной полярности, а управляющий электрод соединяют с гнездом XS5. Движок переменного резистора R4 устанавливают вначале в нижнее по схеме положение, т. е. полностью вводят сопротивление резистора. На экране осциллографа должна быть пока горизонтальная линия. Затем по мере перемещения движка резистора вверх по схеме, т, е. по мере увеличения тока через управляющий электрод, можно наблюдать изменение наклона линии, как и при проверке переменного резистора. Но вскоре тринистор включится (откроется) и на экране увидите его ветви — прямую и обратную (рис. 10, а).

Такое случится при испытании низковольтного маломощного тринистора, открывающегося при небольших токах через управляющий электрод. Для высоковольтного триниетора следует увеличить питающее напряжение, переставив переключатель SA1 в положение «II».

Но возможен вариант, что даже при большом напряжении и полностью выведенном сопротивлении резистора R4 тринистор вообще не включится (недостаточен ток в цепи управляющего электрода) и на экране осциллографа будет наблюдаться лишь плавный поворот линии от горизонтального к вертикальному положению (рис. 10, б) при перемещении движка переменного резистора.

Как же тогда убедиться в исправности тринистора? Очень просто собрать простую установку из батареи 3336, лампы на 3,5 В и ток 0,26 А и двух кнопочных выключателей (рис. 11). Кратковременное нажатие кнопки SB1 должно вызывать открывание тринистора и зажигание лампы, а нажатие (тоже кратковременное) кнопки SB2— выключение тринистора и гашение лампы. Если же тринистор «не подчиняется» управляющим сигналам от кнопок, значит он неисправен.

Проверяя транзисторы структуры р-п-р малой н средней мощности, подключают к зажимам приставки лишь выводы коллектора и эмиттера (рис. 12). Если транзистор исправен, на экране будет прямая или слегка изогнутая линия развертки.

Затем поочередно соединяют вывод базы с коллектором (вариант I) или эмиттером (вариант 2). На экране должна появляться картина, изображенная соответственно на рис. 12, а или 12, б. Для транзистора структуры п-р-п картина изменится на обратную (рис. 12,в или 12,г). В данном случае проверяют переходы транзистора, которые «работают» как диоды.

Появление искаженного изображения свидетельствует о неустойчивости параметров транзистора. А отклонение сторон угла от горизонтали или вертикали указывает на плохое качество перехода.

Если вывод базы соединять с выводом коллектора или эмиттера через переменный резистор сопротивлением 470 кОм или 1 МОм, можно наблюдать плавный изгиб прямой ветви «диода», свидетельствующий о способности транзистора управляться подаваемым на базу напряжением.

Отредактировано uhoffp (02.05.2018 06:21:43)



Рейтинг форумов | Создать форум бесплатно