Операционный усилитель (ОУ) англ. Operational Amplifier (OpAmp), в народе – операционник, является усилителем постоянного тока (УПТ) с очень большим коэффициентом усиления. Словосочетание «усилитель постоянного тока» не означает, что операционный усилитель может усиливать только постоянный ток. Имеется ввиду, начиная с частоты в ноль Герц, а это и есть постоянный ток.
Термин «операционный» укрепился давно, так как первые образцы ОУ использовались для различных математических операций типа интегрированя, дифференцирования, суммирования и тд.
Коэффициент усиления ОУ зависит от его типа, назначения, структуры и может превышать 1 млн!

На схемах операционный усилитель обозначается вот так:
http://s8.uploads.ru/t/XeJML.jpg

или так
http://s7.uploads.ru/t/eWUuf.jpg

Чаще всего ОУ на схемах обозначаются без выводов питания
http://s7.uploads.ru/t/qoQF7.jpg

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как  +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием.

Как это понять — двухполярное питание? Давайте представим себе батарейку
http://sg.uploads.ru/t/HD6sX.png

Думаю, все вы в курсе, что у батарейки есть «плюс» и есть «минус».  В этом случае «минус» батарейки принимают за ноль,  и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.

А давайте возьмем еще одну такую батарейку и соединим их последовательно:
http://s8.uploads.ru/t/eSrFY.jpg

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже мерять все напряжения?
http://sh.uploads.ru/t/iB8Ak.jpg

Вот здесь мы как раз и получили двухполярное питание.

Итак, далее по классике, слева два входа, а справа – выход.
http://s8.uploads.ru/t/EqQ1f.jpg

ОУ

Вход со знаком «плюс» называют НЕинвертирующий, а вход со знаком «минус» инвертирующий. Не путайте эти два знака с полярностью питания! Они НЕ говорят о том, что надо  в обязательном порядке подавать на инвертирующий вход сигнал с отрицательной полярностью, а на НЕинвертирующий сигнал с положительной полярностью, и далее вы поймете почему.

Для того, чтобы понять суть работы ОУ, рассмотрим его идеальную и реальную модели.

1) Входное сопротивление идеального ОУ бесконечно большое.
http://sh.uploads.ru/t/0hrjV.jpg

В реальных ОУ значение входного сопротивления зависит от назначения ОУ (универсальный, видео, прецизионный и т.п.) типа используемых транзисторов и схемотехники входного каскада и может составлять от сотен Ом и до десятков МОм. Типовое значение для ОУ общего применения — несколько МОм.

2) Второе правило вытекает из первого правила. Так как входное сопротивление идеального ОУ бесконечно большое, то  входной ток будет равняться нулю.
http://sh.uploads.ru/t/Qb26V.jpg

На самом же деле это допущение вполне справедливо для ОУ с полевыми транзисторами на входе, у которых входные токи могут быть меньше пикоампер. Но есть также ОУ с биполярными транзисторами на входе. Здесь уже входной ток может быть десятки микроампер.

3) Выходное сопротивление идеального ОУ равняется нулю.
http://s7.uploads.ru/t/3qewo.jpg

Это значит, что напряжение на выходе ОУ не будет изменяться при изменении тока нагрузки. В реальных ОУ общего применения выходное сопротивление составляет десятки Ом (обычно 50 Ом).
Кроме того, выходное сопротивление зависит от частоты сигнала.

4) Коэффициент усиления в идеальном ОУ бесконечно большой. В реальности он ограничен внутренней схемотехникой ОУ, а выходное напряжение ограничено напряжением питания.

5) Так как коэффициент усиления  бесконечно большой, следовательно,  разность напряжений между входами идеального ОУ равняется нулю. Иначе если даже потенциал одного входа будет больше или меньше хотя бы на заряд одного электрона, то на выходе будет бесконечно большой потенциал.

6) Коэффициент усиления в идеальном ОУ не зависит от частоты сигнала и постоянен на всех частотах. В реальных ОУ это условие выполняется только для низких частот до какой-либо частоты среза, которая у каждого ОУ индивидуальна. Обычно за частоту среза принимают падение усиления на 3 дБ или до уровня 0,7 от усиления на нулевой частоте (постоянный ток).

Схема простейшего ОУ на транзисторах выглядит примерно вот так:
http://s5.uploads.ru/t/GPy3d.jpg

Давайте рассмотрим, как работает ОУ
http://sg.uploads.ru/t/smPzF.jpg

Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).

Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционник LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы

http://sh.uploads.ru/t/7R1ws.jpg
Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению
http://s9.uploads.ru/t/nxVHW.jpg

Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ. Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в  нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. «от рельса до рельса», а на языке электроники «от одной шины питания и до другой».

Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:
http://sh.uploads.ru/t/lpzSb.jpg

Как вы видите, в данный момент выход «лег» на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.

Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:
http://s5.uploads.ru/t/XeI1S.jpg

На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.
http://s3.uploads.ru/t/x2SvW.jpg

Итак, мы рассмотрели случай, когда напряжение на входах может различаться. Но что будет, если они будут равны? Что нам покажет Proteus в этом случае? Хм, показал +Uпит.
http://s7.uploads.ru/t/AxYGd.jpg

А что покажет Falstad? Ноль Вольт.
http://sd.uploads.ru/t/LKmNc.jpg

Кому верить? Никому! В реале, такое сделать невозможно, чтобы на два входа загнать абсолютно равные напряжения. Поэтому такое состояние ОУ будет неустойчивым и значения на выходе могут принимать  значения или -E Вольт, или +E Вольт.

Давайте подадим синусоидальный сигнал амплитудой в 1 Вольт и частотой в 1 килоГерц на НЕинвертирующий вход, а инвертирующий посадим на землю, то есть на ноль.
http://sg.uploads.ru/t/XOSWN.jpg

Смотрим, что имеем на виртуальном осциллографе:
http://sd.uploads.ru/t/764tl.jpg

Что можно сказать в этом случае? Когда синусоидальный сигнал находится в отрицательной области, на выходе ОУ у нас -Uпит, а когда синусоидальный сигнал находится в положительной области, то и на выходе имеем +Uпит. Также обратите внимание на то, что напряжение на выходе ОУ не может резко менять свое значение. Поэтому, в ОУ есть такой параметр, как скорость нарастания выходного напряжения VUвых. Этот параметр показывает насколько быстро может измениться выходное напряжение ОУ при работе в импульсных схемах. Измеряется в Вольт/сек. Ну и как вы поняли, чем больше значение этого параметра, тем лучше ведет себя ОУ в импульсных схемах. Для LM358 этот параметр равен 0,6 В/мкс.