Тиристор идеально подходит для регулирования мощности переменного напряжения во всем, кроме одного: он является однополупериодным устройством, а это означает, что даже при полной проводимости используется только половина мощности. Можно включить параллельно два тиристора навстречу друг другу, как это показано на рис.1, чтобы обеспечить двух-полупериодный режим работы, однако для этого требуется подавать импульсы запуска на управляющие электроды от двух изолированных, но синхронных источников, как это видно из рисунка.
https://forumupload.ru/uploads/0019/8b/c2/2/641589.jpg

Двухполупериодный регулятор можно построить на двух тиристорах

Рис.1 Двухполупериодный регулятор можно построить на двух тиристорах. Для изоляции источников импульсов от напряжения сети используются оптопары.

Самым полезным устройством для практического регулирования мощности переменного напряжения является двунаправленный тиристор или симистор. Как можно видеть на рис2. симистор можно рассматривать как два инверсно-параллельных тиристора с управлением от единственного источника сигнала. Симисторы являются настолько гибкими устройствами, что их можно переключать в проводящее состояние как положительным, так и отрицательным импульсом запуска независимо от мгновенной полярности источника переменного напряжения. Названия катод и анод теряют смысл для симистора; ближайший к управляющему электроду вывод назвали, не мудрствуя лукаво, основным выводом 1 (МТ1), а другой — основным выводом 2 (МТ2). Запускающий импульс всегда подается относительно вывода МТ1 так же, как в случае тиристора он подается относительно катода.

Симистор: (а) структура, (b) условное обозначение
https://forumupload.ru/uploads/0019/8b/c2/2/963913.jpg

Рис2. Симистор: (а) структура, (b) условное обозначение.

Обычно для переключения симистора, рассчитанного на ток до 25 А, достаточен пусковой ток 20 мА, и одним из простейших примеров его применения является «твердотельное реле», в котором небольшой пусковой ток используется для управления большим током нагрузки (рис.3). В качестве ключа SW1 могут быть геркон, чувствительное термореле или любая контактная пара, рассчитанная на 50 мА; ток в цепи нагрузки ограничивается только параметрами симистора. Полезно отметить, что резистор R1 в цепи запуска находится под напряжением сети только в моменты включения симистора; как только симистор включается, разность потенциалов на резисторе R1 падает до величины около одного вольта, так что достаточен полуваттный резистор.

Простое твердотельное реле на симисторе
https://forumupload.ru/uploads/0019/8b/c2/2/67657.jpg
]

Рис.3 Простое «твердотельное реле» на симисторе.

Весьма распространенными применениями симистора являются регулятор яркости для лампы или управление скоростью вращения мотора. На рис.4 показана такая схема. Временное положение запускающих импульсов устанавливается RC-фазовращателем; потенциометром R2 регулируют яркость лампы, тогда как резистор R1 просто ограничивает ток, когда потенциометр установлен в положение с минимальным сопротивлением. Сами импульсы запуска формируются динистором, то есть двунаправленным триггерным диодом. Динистор можно представить себе как маломощный тиристор без управляющего электрода с низким напряжением лавинного пробоя (около 30 В). Когда разность потенциалов на конденсаторе С1 достигает уровня пробоя в динисторе, мгновенный импульс разряда конденсатора включает симистор.

Простейшая схема регулировки яркости лампы на симисторе с фазовым управлением
https://forumupload.ru/uploads/0019/8b/c2/2/249638.jpg
]

Рис.4 Простейшая схема регулировки яркости лампы на симисторе с фазовым управлением.

Легко сделать автоматический фотоэлектрический выключатель лампы, присоединив параллельно конденсатору С1 фотоэлемент ORP12 (светозависимый резистор). Сопротивление фотоэлемента в темноте велико, порядка 1 МОм, но при дневном свете оно падает до нескольких килоом так, что симистор не может поджечься и лампа выключена. Если в автоматическом выключателе ручная регулировка не требуется, то резистор R2 можно заменить на короткое замыкание.

https://forumupload.ru/uploads/0019/8b/c2/2/243842.jpg
Рис.5 Форма напряжения на нагрузке в симисторном регуляторе при постепенном увеличении фазового сдвига.
На рис.5 показано, как симистор управляет мощностью в нагрузке, отрезая начальную часть каждого полупериода. Длительность пропущенной части зависит от запаздывания пускового импульса по фазе, которое определяется сопротивлением R1+R2 и емкостью С1. В простейшей схеме управления на рис.4 фазовый сдвиг не может быть больше 90°, так как используется только одна RС-цепочка. Поэтому такая схема является плохим регулятором при малой мощности, поскольку в нем могут происходить неожиданные скачки от выключенного состояния к полной мощности.

Более совершенная схема приведена на рис.6; включение дополнительной RC-цепочки (R3С3) дает больший фазовый сдвиг для лучшего управления при малой мощности. Дальнейшие усовершенствования состоят во введении следующих элементов: (а) демпфера с постоянной времени R4С4 для предотвращения ошибочных переключений от противо-э.д.с. индуктивной нагрузки и (b) радиочастотного фильтра L1C1 для подавления помех. Последний элемент всегда следует вводить в симисторную или тиристорную схему, работающую по принципу «отсекания части колебания», поскольку быстрые включения и выключения могут создавать серьезные радиопомехи в питающей сети.

Имеется большое число различных симисторов и тиристоров которые нашли широкое применение в бытовой технике. Как и в случае выпрямительных диодов, для того, чтобы выбрать прибор с нужными номинальными напряжением и током, можно обратиться к каталогам и справочным данным.

Симисторный регулятор мощности с широким диапазоном регулировки и встроенным подавлением помех
https://forumupload.ru/uploads/0019/8b/c2/2/970857.jpg

Рис.6 Симисторный регулятор мощности с широким диапазоном регулировки и встроенным подавлением помех.

Большинство производителей выпускают подходящие динисторы, но имеются также приборы, называемые quadrac, в которых объединены симистор и динистор.
https://forumupload.ru/uploads/0019/8b/c2/2/737239.jpg

Рис.7 Корпуса распространенных симисторов: (а) корпус Т066, (b) болтовой крепеж, (с) пластмассовый корпус Т0220.
На рис.7 показаны корпуса и цоколевка распространенных симисторов. Если симистор должен использоваться на полную допустимую мощность, то его необходимо закрепить на теплоотводе.

Подавление радиочастотных помех, создаваемых симисторными или тиристорными регуляторами с фазовым управлением, становится более трудным и дорогим при больших значениях тока нагрузки. В электрических нагревателях и в других нагрузках с большой инерционностью можно уменьшить помехи, пропуская каждый раз целое число полупериодов. Это позволяет избежать скачкообразных изменений тока, которые и вызывают радиочастотные помехи. Такой способ называется прерывистым запуском или управлением с целым числом периодов. Этот способ, как правило, не подходит для управления яркостью лампы из-за мерцания. Для осуществления управления с целым числом периодов подходят такие микросхемы, как SL441, включающиеся при нулевом напряжении. Они определяют пересечение напряжением сети нулевого уровня и обеспечивают запуск симистора от датчика, сопротивление которого меняется, например, от термистора.

Корпуса распространенных симисторов