Тиристор – это полупроводниковый прибор со структурой типа p-n-p-n. Основным отличаем тиристора от диода является возможность управления пропускной способностью. Если диод пропускает только в одном направлении, то тиристор может пропускать напряжение, как в прямом направлении, так и в обратном. Когда тиристор находится в открытом состоянии, он ведет себя как обычный диод. Если изменить полярность подаваемого тока, то тиристор будет работать в обратном направлении.
Тиристоры применяются, как правило, для управления подачей на какой-либо прибор напряжения, осуществляется это следующим образом: скажем, нам дана схема, состоящая из генератора, тиристора и резистора. Для того чтобы отпереть тиристор и подать напряжение на резистор необходимо подать управляющий ток, который как правило имеет форму управляющего импульса. Он должен протекать лишь до тех пор, пока тиристор не переключится в проводящее состояние и механизм внутреннего усиления не сможет поддерживать его в этом состоянии.
Для того чтобы запереть тиристор необходимо подать управляющий ток другой полярности при этом который должен быть равен тому току который был подан для того чтобы его отпереть. Современные тиристоры имеют куда более сложную конструкцию в отличие от приведенного мною в качестве примера тиристора. Данный тиристор имеет всего 3 входа один, из которых предназначен для подачи управляющего импульса (тока). Преимущество тиристора перед транзистором является возможность переключения тока, тем самым увеличивая свою универсальность.
УСТРОЙСТВО ТИРИСТОРА
Сообщений 1 страница 3 из 3
Поделиться130.03.2018 08:39:13
Поделиться221.04.2018 12:51:39
Тиристоры. Виды и устройство. Работа и применение. Особенности
Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.
Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.
Принцип действия
Рассмотрим работу тиристора по следующей простой схеме.
К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.
Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).
Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.
Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.
Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.
Особенности устройства
Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:
Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.
Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.
Tiristory KU202N
Основные параметры тиристоров
• Максимально допустимый прямой ток. Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
• Максимально допустимый обратный ток.
• Прямое напряжение. Это падение напряжения при максимальном токе.
• Обратное напряжение. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
• Напряжение включения. Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
• Минимальный ток управляющего электрода. Он необходим для включения тиристора.
• Максимально допустимый ток управления.
• Максимально допустимая рассеиваемая мощность.
Динамический параметр
Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.
Виды тиристоров
Различают несколько разновидностей тиристоров. Рассмотрим их классификацию.
По способу управления разделяют на:
Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
Триодные тиристоры, или тринисторы. Они открываются током управления электродом.
Триодные виды тиристоров в свою очередь разделяются:
Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
Управление анодом – управляющее напряжение подходит на электрод и анод.
Запирание тиристора производится:
Уменьшением анодного тока – катод меньше тока удержания.
Подачей напряжения запирания на электрод управления.
По обратной проводимости тиристоры делятся:
Обратно-проводящие – имеют малое обратное напряжение.
Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
Симисторы – пропускает токи в двух направлениях.
Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.
По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).
Разделение тиристоров по мощности
При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.
Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.
Простая сигнализация на основе тиристора
На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.
Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.
Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.
Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.
Регулятор мощности на тиристоре
Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.
• Полупроводниковый диод VD.
• Переменный резистор R1.
• Постоянный резистор R2.
• Конденсатор С.
• Тиристор VS.
Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.
Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.
Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.
К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.
На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.
Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричными тиристорами или симисторами. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.
Поделиться308.05.2018 07:46:16
Принцип работы тиристора